21 research outputs found

    Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate

    Full text link
    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable 'nor' gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles

    Guidance for autonomous spacecraft repointing under attitude constraints and actuator limitations

    Get PDF
    Current and future space observation missions need to perform many large-angle, multi-axis slew maneuvers between observations while keeping the scientific instrument's attitude in a safe region. The state-of-practice typically divides each multi-axis maneuver into a series of single-axis sub-maneuvers, each of which is computed by restricting its guidance solution to the exact spacecraft momentum capacity. This ensures that the constraints are explicitly considered and results in a simple on-board implementation of the guidance algorithm, but is time-consuming and non-optimal for the whole multi-axis maneuver. Addressing this issue, this article presents a novel analytical guidance approach that relies on the convexity of the permissible attitude zone. The proposed guidance is time-optimal for a given spacecraft design and set of admissible observation targets. Both guidance approaches are compared using a multi-body/multi-actuator benchmark spacecraft, whose complex repointing phase requires an autonomous on-board guidance computation. It is shown that the proposed approach is systematic and that the reduction in maneuver time, compared to the state-of-practice approach, is considerable.Publicad

    Colloidal topological insulators

    Get PDF
    Topological insulators insulate in the bulk but exhibit robust conducting edge states protected by the topology of the bulk material. Here, we design a colloidal topological insulator and demonstrate experimentally the occurrence of edge states in a classical particle system. Magnetic colloidal particles travel along the edge of two distinct magnetic lattices. We drive the colloids with a uniform external magnetic field that performs a topologically non-trivial modulation loop. The loop induces closed orbits in the bulk of the magnetic lattices. At the edge, where both lattices merge, the colloids perform skipping orbits trajectories and hence edge-transport. We also observe paramagnetic and diamagnetic colloids moving in opposite directions along the edge between two inverted patterns; the analogue of a quantum spin Hall effect in topological insulators. We present a new, robust, and versatile way of transporting colloidal particles, enabling new pathways towards lab on a chip applications

    Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images

    Full text link
    Multiple Sclerosis (MS) is a severe neurological disease characterized by inflammatory lesions in the central nervous system. Hence, predicting inflammatory disease activity is crucial for disease assessment and treatment. However, MS lesions can occur throughout the brain and vary in shape, size and total count among patients. The high variance in lesion load and locations makes it challenging for machine learning methods to learn a globally effective representation of whole-brain MRI scans to assess and predict disease. Technically it is non-trivial to incorporate essential biomarkers such as lesion load or spatial proximity. Our work represents the first attempt to utilize graph neural networks (GNN) to aggregate these biomarkers for a novel global representation. We propose a two-stage MS inflammatory disease activity prediction approach. First, a 3D segmentation network detects lesions, and a self-supervised algorithm extracts their image features. Second, the detected lesions are used to build a patient graph. The lesions act as nodes in the graph and are initialized with image features extracted in the first stage. Finally, the lesions are connected based on their spatial proximity and the inflammatory disease activity prediction is formulated as a graph classification task. Furthermore, we propose a self-pruning strategy to auto-select the most critical lesions for prediction. Our proposed method outperforms the existing baseline by a large margin (AUCs of 0.67 vs. 0.61 and 0.66 vs. 0.60 for one-year and two-year inflammatory disease activity, respectively). Finally, our proposed method enjoys inherent explainability by assigning an importance score to each lesion for the overall prediction. Code is available at https://github.com/chinmay5/ms_ida.gi

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate

    No full text
    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable 'nor' gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles

    FedCostWAvg: A New Averaging for Better Federated Learning

    Full text link
    We propose a simple new aggregation strategy for federated learning that won the MICCAI Federated Tumor Segmentation Challenge 2021 (FETS), the first ever challenge on Federated Learning in the Machine Learning community. Our method addresses the problem of how to aggregate multiple models that were trained on different data sets. Conceptually, we propose a new way to choose the weights when averaging the different models, thereby extending the current state of the art (FedAvg). Empirical validation demonstrates that our approach reaches a notable improvement in segmentation performance compared to FedAvg
    corecore